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Abstract—Google’s TensorFlow is one of the most popular
Deep Learning frameworks nowadays. Distributed TensorFlow
supports various channels to efficiently transfer tensors, such as
gRPC over TCP/IP, gRPC+Verbs, and gRPC+MPI. At present,
the community lacks a thorough characterization of distributed
TensorFlow communication channels. This is critical because
high-performance Deep Learning with TensorFlow needs an
efficient communication runtime. Thus, we conduct a thorough
analysis of the communication characteristics of distributed Ten-
sorFlow. Our studies show that none of the existing channels in
TensorFlow can support adaptive and efficient communication for
Deep Learning workloads with different message sizes. Moreover,
the community needs to maintain these different channels while
the users are also expected to tune these channels to get the
desired performance. Therefore, this paper proposes a unified
approach to have a single gRPC runtime (i.e., AR-gRPC) in
TensorFlow with Adaptive and efficient RDMA protocols. In AR-
gRPC, we propose designs such as hybrid communication proto-
cols, message pipelining and coalescing, zero-copy transmission
etc. to make our runtime be adaptive to different message sizes
for Deep Learning workloads. Our performance evaluations show
that AR-gRPC can significantly speedup gRPC performance by
up to 4.1x and 2.3x compared to the default gRPC design on
IPoIB and another RDMA-based gRPC design in the community.
Comet supercomputer shows that AR-gRPC design can reduce
the Point-to-Point latency by up to 75% compared to the default
gRPC design. By integrating our AR-gRPC with TensorFlow, we
can achieve up to 3x distributed training speedup over default
gRPC-IPoIB based TensorFlow.

I. INTRODUCTION

Deep Learning (DL) is one of the fastest-growing field in

Artificial Intelligence (AI). Google’s TensorFlow is one of

the most popular frameworks to perform distributed Deep

Learning on big data sets and in the last few years it has

gained a lot of momentum in Big Data, Deep Learning, and

High-Performance Computing (HPC) communities.

During DL model training and inference on TensorFlow,

gradient updates (or tensor transmissions) are the critical time-

consuming steps that incur a massive volume of data transfer

over the network. This becomes a major bottleneck in DL

workloads. Increasing the mini-batch size is one solution as

this results in less gradient updates and longer local computa-

tion in TensorFlow. However, studies [1, 2, 3] have shown this

approach can increase the time for the DL model to converge.

Other alternative solutions have been proposed to accelerate

TensorFlow by taking advantage of various high-performance
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technologies. For instance, the current open-source Tensor-

Flow leverages multiple ways of doing gradient updates, by

running default gRPC [4] over TCP/IP or IPoIB (IP over

InfiniBand), gRPC with a dedicated Verbs-based channel [5],

and gRPC with a dedicated MPI [6, 5] based channel. The

main reason of bringing Verbs and MPI based channels into

TensorFlow is to utilize high-performance communication

mechanisms such as Remote Direct Memory Access (RDMA)

over high-speed interconnects, like InfiniBand and RDMA

over Converged Ethernet (RoCE).

According to recent studies [7, 8, 9, 10, 11] in the

community, researchers have shown that with the help of

high-performance interconnects and high-speed communica-

tion protocols, like RDMA, many system software such as

Apache Hadoop, Spark, Key-Value Stores, and even Deep

Learning frameworks can be benefited by incorporating native

RDMA support in these frameworks.

A. Motivation
As we can see, in order to achieve the optimal com-

munication performance on high-performance networks, the

TensorFlow community has maintained different channels, i.e.

gRPC, Verbs, and MPI. On the other hand, the users also

need to understand and tune these channels on their platforms

to get the desired performance. Such scenarios bring a lot

Table I: Comparison with Related Work

Work Channel Main Mechanism

[12]

gRPC TCP/IP, IP-over-IB

gRPC + Verbs RDMA for Tensor transfers;

gRPC for others

gRPC + MPI MPI for Tensor transfers;

gRPC for others

[13] gRPC Replacing Sockets Send/

Recv with Verbs Send/Recv

This paper AR-gRPC Native RDMA; Adaptive

communication for

TensorFlow demands

of challenges for both developers as well as end users. This

also motivates us to answer a broad question: Can a unified

approach be proposed to provide optimal performance for

TensorFlow workloads? To answer this question, we first

conduct a survey on the existing solutions which have been

proposed in the community for TensorFlow. Table I summa-

rizes the comparison among these different solutions. From
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this table, we clearly see that the community is trying to

run DL workloads on top of gRPC (with TCP/IP or IPoIB),

Verbs (RDMA or Send/Recv), and MPI. In all these different

solutions, gRPC is responsible for at least administrative tasks

such as establishing the RDMA path, exchanging computation

graphs, etc. Therefore, if gRPC is a compulsory component of

TensorFlow, it makes more sense to bring RDMA capability

directly into the gRPC runtime. This will allow TensorFlow

to automatically benefit from RDMA-enhanced gRPC. In fact,

there is an existing version of RDMA-based gRPC [13] in

the community, which indicates researchers are investigating

in this direction. With these many available channels, several

important questions we need to explore: 1) Can these new

channels bring benefits for the DL workloads? 2) Which

channel performs the best and why? 3) Is there any need

to propose a new RDMA-based gRPC runtime, which can

provide better performance than existing channels? 4) If so,

how much additional performance benefit can we gain through

the proposed designs?

B. Contributions
To address above challenges, this paper first meticulously

analyze the distributed TensorFlow communication character-

istics to find the bottlenecks present in the existing supported

channels. Through our characterization, we find many critical

bottlenecks in all these existing channels (See Section III).

We use these observations to guide us proposing a new

gRPC runtime, called AR-gRPC. In AR-gRPC, we propose

designs such as hybrid RDMA communication protocols,

message pipelining and coalescing, zero-copy transmission etc.

to make our runtime be adaptive to different message sizes

for DL workloads (See Section IV). From our performance

evaluations, we see that our proposed design can speedup

gRPC performance by up to 4.1x and 2.3x compared to the

default gRPC on IPoIB and the public RDMA-based gRPC,

respectively. By integrating AR-gRPC with TensorFlow, we

achieve up to 3x performance speedup for distributed training

over default gRPC-IPoIB based TensorFlow (See Section V).

Through our proposed AR-gRPC design, TensorFlow can

run with gRPC channel alone and get the optimal performance.

We believe that our proposed design will significantly reduce

the maintenance work for the TensorFlow community as well

as simplify the usage for the end users. AR-gRPC can also

benefit other applications or systems which are using gRPC.

II. BACKGROUND

This section presents an overview on TensorFlow and gRPC.

A. Overview of TensorFlow
TensorFlow [12] is a widely adopted open source Deep

Learning framework developed by the Google Brain Team.

TensorFlow leverages data flow graphs to do the distributed

deep neural network training. Nodes in the graph represent

mathematical operations and the graph edges represent the

multidimensional data arrays (i.e., tensors) communicated

across the nodes. The execution model of distributed Ten-

sorFlow can be attributed to four distinct components: client,

master, a set of workers, and several Parameter Servers (PS).

Figure 1(a) illustrates the interaction among these components.

The computational graph is built by a user-written client

Tensorflow program. The client then creates a session to the

master and sends the graph definitions as a protocol buffer.

Afterwards, the master delegates and coordinates the execution

(after pruning and optimizing) of the subgraphs to a set of

distributed worker and PS processes. Each of these processes

can use various devices (e.g., CPU, GPU, TPU [14]) to finish

their task. The Parameter Servers are responsible for updating

and storing the model parameters, while the workers send op-

timization updates of the model to and get the updated model

from Parameter Servers. The parameter exchanging process

(or tensor transmission) is the main communication phase,

and the default open-source TensorFlow can support different

communication channels such as gRPC, gRPC+Verbs, and

gRPC+MPI to handle it, as shown in Figure 1(a).

(a) TensorFlow
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(b) gRPC

Figure 1: Overview of TensorFlow and gRPC
B. Overview of gRPC

gRPC [4] is the most fundamental communication mecha-

nism in distributed TensorFlow. No matter which channel, as

mentioned in Section II-A, is selected in TensorFlow, gRPC

will be always used to perform communication for administra-

tive tasks and (or) exchanging model parameters. Not only for

TensorFlow, many other production systems in companies like

Netflix, Cisco, Juniper etc. use gRPC for connecting multiple

services in their environments. Figure 1(b) depicts a typical

gRPC based communication scenario where a gRPC Python

client communicates with a gRPC server that is written in C++.

The client and server communicate with each other by using

the protocol buffer protocol (i.e., Proto Request/Response).

The gRPC core handles the communication and thus is the

main point of interest. The gRPC core defines an abstraction

called an Endpoint that encapsulates a channel between two

communicating processes. An Endpoint implements Write and

Read callbacks for a specific transport (for example TCP and

UDP) protocol. In Section IV, we illustrate how we extend

this design paradigm to support RDMA-based endpoints.

III. CHARACTERIZATION OF DISTRIBUTED TENSORFLOW

Before delving into designing new communication schemes,

we first characterize the existing communication channels in

TensorFlow to identify possible bottlenecks.

A. Methodology for Characterization
We characterize the three communication channels available

in the open source TensorFlow. The default gRPC channel

runs over IPoIB, while Verbs and MPI based channels use

native RDMA based communication for tensor transmission.
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We choose MVAPICH2-2.3b and Intel-MPI-2018 libraries for

the MPI channel and found that both the MPI libraries provide

similar results. We deploy a four-node TensorFlow cluster

(i.e., Cluster A, see Section V-A) in the Parameter Server

(PS) mode. The PS is deployed on one node (uses CPU),

while the workers are deployed on the rest (use GPUs).

We synchronously train (32/GPU batch size) a resnet50 [15]

DNN, available in TensorFlow Convolution Neural Net bench-

mark [5]. This benchmark generates synthetic images and

measures TensorFlow training performance by total number of

images processed per second. Resnet50 DNN is a moderately

complex network and thus is suitable for our analysis.

Table II: TensorFlow Perfor-

mance for Resnet50

Channel Images/Sec

gRPC 91.06

gRPC+Verbs 103.21

gRPC+MPI 84.45

We have two important

observations from the results

summarized in Table II. First,

gRPC+Verbs can perform

slightly better than gRPC (i.e.,

103.21 vs. 91.06), however,

the benefit is not significant

(around 13%). This implies

that gRPC+Verbs can utilize the RDMA network efficiently

compared to the default gRPC, but the question is can

the performance be improved even further? Second, we

surprisingly see that gRPC+MPI performs worse than

the default gRPC. These two observations motivate us to

further understand the in-depth designs and communication

characteristics of TensorFlow with different channels. The

following sections will present the characterization details.

B. Characterization for the gRPC Channel

To understand the communication characteristics, we first

profile the payload sizes being transmitted during Tensor-

Flow training. Figure 2(a) shows 2K samples of payload

distribution when the default gRPC channel is used. These

snapshots are taken from one of the worker nodes as the

other nodes have the similar traces due to the symmetrical

characteristic of the workload. In Figure 2(a), we see that

the communication over Socket-based gRPC channel involves

a lot of short as well as large (up to 4 MBytes) messages.

The reason of such upper bound is that the default gRPC

has a maximum 4 MBytes payload limit. However, from later

profiling results (see Figure 2(b) and 2(c)), we see that the

actual payload in the training of resnet50 can be much larger

than 4 MBytes. Clearly, such a naive chunking scheme in

gRPC for transferring large messages with TCP/IP over a

high-performance network is one of the major bottlenecks.

To further identify potential bottlenecks, we analyze the com-

munication flow for tensor transfer over gRPC channel, as

shown in Figure 3(a). TensorFlow uses a rendezvous protocol

for tensor transmission. The TF (TensorFlow) Sender always

puts the tensors in the local table, whereas the TF receiver

actively requests for the tensor only when needed. The default

gRPC uses sendmsg and recvmsg primitives for sending

and receiving payloads. These primitives are useful for sending

or receiving from one or more buffers in a single function call.

The payloads are constructed using Unix iovec structures.

However, sendmsg internally copies all the data either into

a pre-allocated (for payload less than 2KBytes), or a newly

allocated buffer. This extra copying and allocation of new

memory can be a bottleneck for high-speed data transfer.

(a) gRPC (b) gRPC+Verbs (c) gRPC+MPI

Figure 2: Payload distribution during Resnet50 training
C. Characterization for the gRPC+Verbs Channel

Similarly, Figure 2(b) shows the payload distributions over

gRPC+Verbs. Here gRPC is responsible for administrative

tasks and the tensor transfers are done over Verbs that is ca-

pable of RDMA. Figure 3(b) depicts the communication flow

of tensor transfer over Verbs. The Verbs-based scheme writes

all the payloads by employing an RDMA Write operation.

Figure 2(b) shows that the Verbs-based channel is sending

mostly 512 Bytes chunk payloads. However, studies [16, 17]

have shown that writing messages of this length using RDMA

rendezvous protocol is suboptimal. Also, using only RDMA

Write for all payloads may not be the most efficient use

of RDMA [17]. As shown in Figure 3(b), TF Sender and

Receiver maintain two message buffers, two ACK buffers,

and many tensor buffers. These buffers are pre-pinned RDMA

buffers. For requesting a tensor, TF Receiver sends a message

to notify the TF sender. TF Sender first sends an ACK so

that TF Receiver can set the message buffer idle. Then TF

sender finds the tensor locally and places at corresponding

RDMA tensor buffer for transmission. When the tensor size

increases, the current buffer is discarded and a new buffer

of larger size is created and pinned. However, this process

requires additional RDMA message exchanges between sender

and receiver which is a bottleneck. We notice that for a single

tensor transfer, several RDMA writes are involved for flow

control and payload transmission. We aim to design better

protocols to minimize the number of RDMA operations to

further improve the performance.

D. Characterization for the gRPC+MPI Channel
In the gRPC+MPI channel, gRPC is still responsible for

administrative operations, whereas the MPI channel (capable

of RDMA) is used for transferring tensors. Figure 2(c) in-

dicates a wide range of payloads starting from 128 Bytes

to 10 MBytes over the MPI channel. In our experiments,

the MPI channel needs a sufficient amount of tuning to get

acceptable TensorFlow performance. Figure 3(c) shows the

communication flow for tensor exchange via MPI. A dedicated

MPI thread handles all the MPI calls in both sender and

receiver side. The TF Receiver places the tensor requests in a

Request Queue and the MPI-thread sends the requests to the
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Figure 3: Communication Flow of Tensor Transfer Over Different TensorFlow Channels

remote node using MPI Isend. The remote node then forwards

the request to the TensorFlow core that finds the tensor in the

local table. Afterwards, a callback places the tensor in the

Send Queue of the MPI-thread. The MPI-thread checks for

a new tensor request or tensor using MPI Improbe and uses

MPI MRecv (uses ANY SOURCE) to receive data. Based on

the studies [18, 19] in the HPC community, the default design

of the MPI channel in TensorFlow has many bottlenecks. For

example, the current communication flow heavily relies on

the dedicated MPI thread which could be a bottleneck due

to multi-threading, locking, and context switching overhead.

The probing and blocking receiving with ANY SOURCE also

incur overhead due to internal wildcard matching logic in

MPI. These are the reasons why we do not observe better

performance in Table II for the MPI channel. Although, the

message size distribution over gRPC remains almost similar

for both Verbs and MPI channels, interestingly, we observe

that the gRPC+MPI channel has more message transmissions

over the gRPC. This is due to additional gRPC messages

needed to set up different MPI ranks and assign tasks.

E. Summary
From these analysis, we have the following key obser-

vations: 1) The training involves wide range of message

transfers. Communication optimization for large tensors (e.g.,

10 MBytes for resnet50) will reduce the training time, which

is especially true if the DNN model is more complex. 2) The

default designs for the three channels in TensorFlow still have

bottlenecks for utilizing RDMA-capable high-performance

networks as discussed above. 3) For both gRPC+Verbs and

gRPC+MPI schemes, even though a small fraction, some mes-

sages still go over the default inefficient gRPC with TCP/IP.

Also, both of these schemes still need to maintain two separate

communication runtimes co-existing in the same TensorFlow

architecture. This may cause inefficient communication perfor-

mance due to resource contention, unawareness between each

other, and possible deadlocks [20]. 4) None of these channels

support adaptive communication for Deep Learning workloads

with different message sizes.

As we can see, a clear challenge is facing the TensorFlow

community – Can we propose a unified approach to have
a single gRPC runtime in TensorFlow with adaptive and

efficient RDMA protocols, which can resolve the bottle-
necks as mentioned above? Although there are some initial

attempts in the community to integrate gRPC with RDMA, the

design of existing version of RDMA-gRPC [13] is suboptimal

due to several reasons, such as lack of using one-sided RDMA

operations, no adaptive designs, interrupt-based signaling, etc.

As we will see later in Section V, their design is not suitable

for the transmission patterns that Deep Learning applications

demand. Therefore, we propose a highly optimized adaptive

gRPC with RDMA (i.e., AR-gRPC) that brings lower latency

and higher throughput over high-speed interconnects.

IV. PROPOSED DESIGN OF AR-GRPC

In this section, we present AR-gRPC that brings high-

performance RDMA-based communication over InfiniBand

and RoCE. First, we discuss the key components of AR-gRPC

architecture in Section IV-A. Then in Section IV-B. we discuss

the associated optimizations for achieving high performance.

A. Architecture Overview of AR-gRPC
In AR-gRPC, we revamp the communication layer of the de-

fault gRPC architecture. We propose novel RDMA Endpoints

that achieve low latency and high throughput. Figure 4(a)

shows the architecture overview of AR-gRPC engine.

RDMA-Endpoint: RDMA-Endpoint extends the core com-

munication abstraction (i.e., Endpoint) in default gRPC design,

that encapsulates an RDMA connection between an RDMA

client and server. This provides functionalities such as write

(RDMA-Endpoint-Write), read (RDMA-Endpoint-Read), and

polling (RDMA-Polling). RDMA-Endpoint can comply with

the default gRPC Endpoint architecture seamlessly.

RDMA-Endpoint-Write: As shown in Figure 4(a), serialized

protobuf messages from the application layer are sent to the

remote process via RDMA-Endpoint-Write. RDMA-Endpoint-

Write uses a pinned RDMA buffer for the message transfer.

RDMA-Polling: Due to the popularity of multi-core proces-

sors on modern clusters, we choose one or more dedicated

cores to perform RDMA completion queue polling. Also, we

employ “busy polling” completion detection strategy that is to

repeatedly poll completion queue until a completion (sending

or receiving a message) become available. In this way, the

core resources are used efficiently and also aids in achieving

low latency send/receive over the network. All new incoming
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Figure 4: Overview of AR-gRPC and the Corresponding Communication in TensorFlow

messages are kept on a global RDMA buffer pool. Once the

polling engine detects a newly received message, it triggers

RDMA-Endpoint-Read to consume the message.

RDMA-Endpoint-Read: Messages received by the RDMA-

Polling thread are given to the RDMA-Endpoint-Read handler.

The RDMA-Endpoint-Read handler then constructs an appli-

cation payload from the contents in the RDMA pinned buffer.

Afterwards, it sends the payload to the upper layer where it is

subsequently deserialized and consumed by the application.

B. Adaptive RDMA-based Communication

As shown in Section III, DL workloads on TensorFlow

involves many different size message transfers. All the exist-

ing designs in different TensorFlow channels are transferring

messages in sub-optimal fashion. In this paper, we propose

adaptive RDMA-based communication schemes as follows.

Hybrid Communication: We choose the eager protocol for

small messages (with two-sided RDMA Send/Recv) and ren-

dezvous (with one-sided RDMA READ from the remote

side) protocol for the rest. The eager threshold of the mes-

sage size is auto-tuned based on the underlying architecture.

Moreover, this parameter is user tunable for added flexibility.

Our proposed design uses RDMA operations more efficiently

as compared to the Verbs-based channel we discussed in

Section III. This is mainly because of three reasons: 1) Our

design can adapt to the message sizes to automatically choose

the proper protocol, while the communication protocol in the

default Verbs-based channel of TensorFlow is fixed. 2) We

choose RDMA Read as it sends only RTS message before the

receiver reads from the remote memory. In contrast, the default

Verbs-based channel in TensorFlow chooses to use RDMA

Write based protocol, which needs to send multiple control

(e.g., RTS and CTS) messages before writing to the remote

memory. 3) Our design decouples the buffer management

with RDMA communication that can give the best flexibility,

while the default Verbs channel in TensorFlow has tightly

coupled message buffers and ACK buffers for each RDMA

connection [5]. Figure 4(b) represents the communication flow

of tensor transfer when AR-gRPC is used in TensorFlow. As

we can see from the figure, small payloads are transferred

to the remote side using an eager protocol, while the large

payload (especially when sending the requested tensor) is

chunked and transferred using non-blocking one-sided RDMA

READ in a pipelined fashion (as discussed below).

Message Pipelining and Coalescing: As discussed in Sec-

tion III-B, due to different sizes of tensors and control

messages, the gRPC channel needs to handle the underlying

iovec buffers (asymmetric in size) properly to get the best

communication performance. We run multiple DL models (as

discussed in Section V) to identify the common patterns for

these iovec buffers. Figure 4(c) shows the different patterns

we observe during our experiments. A naive design choice for

RDMA-Endpoint-Write is to copy all these iovec buffers

into a pinned RDMA buffer and then issue a blocking send

operation (i.e., wait until the completion). Even though this

design can use RDMA, it suffers from a major drawback. If

the application payload size is large, then RDMA-Endpoint-

Write will block for a longer time, causing the achieved

latency to be sub-optimal. To resolve this issue, we chunk

large buffers into smaller sized payloads using a configurable

threshold. The default chunk size is auto-tuned based on an

architecture-aware algorithm. To achieve this, we maintain a

pre-tuned parameter table for most of the recent architecture

combinations including processor types, network interface

speeds etc. Then, during runtime, our algorithm detects the

node architecture and selects the best parameter value. After

the payload is chunked, each of them is copied into the RDMA

pinned buffer (we will discuss how to avoid this copy later).

In order to achieve efficient pipelined transfers, we send out

these pieces of messages to the remote process by leveraging a

non-blocking rendezvous (RDMA Read by the remote process)

protocol as shown in Figure 4(b). The multiple non-blocking

sends can saturate the network bandwidth as much as possible,

which suits for large-message transfers. In the receiver side,

there is one major challenge for large message transfers -

when the engine should trigger the RDMA-Endpoint-Read to

consume the received chunks. One solution is to wait for all

the chunks to arrive and then trigger RDMA-Endpoint-Read.
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However, this solution hinders RDMA-Endpoint-Read to con-

sume partially arrived messages, which means the RDMA-

Endpoint-Read completely blocks until the entire message

has arrived. To mitigate this issue, we devise a non-blocking

RDMA-Endpoint-Read, which triggers receiving callbacks as

soon as it receives a chunk of a message. Our design ensures

that the order of a chunk in the message is preserved. This

mechanism ensures high concurrency of receiving an entire

large message. The above design is suitable for transmitting

large iovec buffers. When gRPC application payloads have

many small iovec buffers, sending these buffers individually

would not be optimal. Instead, we coalesce them (up to

eager send threshold), maintaining the relative order, into

pinned RDMA buffer and send it using eager protocol. For

small message transfers, eager protocol performs better than

rendezvous [17], because it sends both control messages and

payloads together. This increases the efficiency of our design.

Zero-Copy Transmission: Even though the above designs

significantly improve the performance of gRPC, we notice

that memory copying of large messages to the RDMA pinned

buffer and vice-versa become bottlenecks. This extra copy is

because between TensorFlow and gRPC, there is a layer to

perform the serialization and deserialization. To achieve zero-

copy transmission, we need to find a transparent approach to

remove this copy. Through analyzing the TensorFlow design,

we find that when TensorFlow sends a tensor, it first allocates a

gRPC byte buffer which can be directly backed by an RDMA

pinned buffer. In this way, we do not need to change any code

in TensorFlow but just make small changes in gRPC runtime

to pick up an RDMA pinned buffer from the buffer pool and

then return it to TensorFlow. During tensor transmission, gRPC

will directly serialize the tensor into the RDMA buffer without

any copy. Similarly, RDMA-Endpoint-Read also leverages

the zero-copy design by constructing the application payload

directly from the RDMA pinned buffer instead of allocating

new memory and copying the content.

V. PERFORMANCE EVALUATION

This section aims to answer the following questions: (1)
What is the improvement in the performance of AR-gRPC

compared to other gRPC designs? (2) How much benefit can

TensorFlow extract by using AR-gRPC?

A. Experimental Setup

We use the following two clusters in our evaluation:

(1) Cluster A: Intel Broadwell Cluster (RI2-IB-EDR):
We use up to twelve nodes on RI2 cluster. Each node is

provisioned with Intel Broadwell (E5-2680-v4) dual fourteen-

core processors, NVIDIA Tesla K80 GPU, 512 GB of memory,

and a Mellanox IB EDR (100 Gbps) HCA. The host processors

are running CentOS release 7.2.

(2) Cluster B: SDSC Comet (SDSC-Comet-IB-FDR): We

use up to four nodes on this cluster. Each node is provisioned

with Intel Haswell (E5-2680-v3) dual twelve-core processors,

128 GB of memory, and a Mellanox IB FDR (56 Gbps) HCA.

The host processors are running CentOS release 6.7.

In all of our experiments, we use gRPC 1.5. AR-gRPC is

also based on this version. The public RDMA-gRPC [13] is

based on gRPC r0.14. gRPC is evaluated on both Cluster

A and B, however, the public RDMA-gRPC fails to run on

Cluster B as it hangs due to a race condition in their code.

We use TensorFlow 1.3 in our experiments on Cluster A. We

were unable to carry TensorFlow experiments on Cluster B

due to GLIBC dependency issues. As Cluster B is public, we

do not have the permission to install the required libraries.
B. Evaluation of gRPC

We implement three RPC micro-benchmarks [21] to eval-

uate different gRPC designs. These benchmarks are - (1)
Point-to-Point Latency, (2) Single Server, Multiple Clients

Throughput, and (3) Performance Comparison in a Fully-

Connected Architecture. We use gRPC C++ APIs to design

these benchmarks. We run the benchmarks 1K times and report

the average results. Note that in all the experiments the default

Socket-based gRPC runs over IPoIB for a fair comparison.

Point-to-Point Latency: Figure 5 shows the comparison of

Point-to-Point latency among different gRPC designs on Clus-

ter A. Figure 6 shows the same comparison between default

gRPC, and AR-gRPC on Cluster B. We categorize the payload

sizes in three different classes - small, medium, and large

ranging from 2 Bytes to 8 KBytes, 16 KBytes to 512 KBytes,

and 1 MBytes to 8 MBytes, respectively. We choose these

ranges because, from the characterization results in Section III,

we see TensorFlow workloads contains all these message sizes.

We first compare the results between the default gRPC

and AR-gRPC. Figure 5(a) shows that the latency for 32

Bytes payload for default gRPC is 35.09 μs, whereas, AR-

gRPC achieves 13.32 μs latency, resulting a 2.6x performance

speedup. Also, Figure 5(b) and 5(c) show that AR-gRPC

reduces the latency of 64 KBytes and 1 MBytes payload by

52% and 55% respectively. Figure 6(a) depicts that in Cluster

B AR-gRPC reduces 32 Bytes latency by 60%. Figure 6(b)

and 6(c) show a speedup of about 2.5x and 4.1x for 64 KBytes

and 1 MBytes payload, respectively. This improvement over

default gRPC is mainly attributed to the AR-gRPC’s native

RDMA design that can perform much better than IPoIB.

Similarly, Figure 5(a) and 5(b) show that AR-gRPC achieves

1.3x and 1.5x speedup for 32 Bytes and 64 KBytes payload,

respectively, over the public RDMA-gRPC. As shown in Fig-

ure 5(c), Point-to-Point latency for 1 MBytes payload is 802.58

μs for public RDMA-gRPC, however, AR-gRPC incurs only

430.66 μs latency for the same payload. Thus, our design

shows a significant speedup of about 1.8x. One key observa-

tion is that the performance of public RDMA-gRPC degrades

significantly as the message size increases. The primary reason

is public RDMA-gRPC uses IBV WR SEND (similar to our

eager send for small messages) for transmitting payload of all

sizes and does not have any advanced optimization.

To further analyze the benefits of our design, Figure 7

depicts a latency comparison, using 512 KBytes to 8 MBytes

payloads, among different AR-gRPC designs and public

RDMA-gRPC. In this figure, the top line corresponds to public

RDMA-gRPC and the rest depicts the incremental AR-gRPC
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(a) Small Payload (b) Medium Payload (c) Large Payload

Figure 5: gRPC Point-to-Point Latency Evaluation on Cluster A

(a) Small Payload (b) Medium Payload (c) Large Payload

Figure 6: gRPC Point-to-Point Latency Evaluation on Cluster B

designs as discussed in Section IV-B. Public RDMA-gRPC

performs worse even when we have only hybrid communica-

tion in our design. This proves that one-sided RDMA operation

performs better in term of latency than two-sided Send-

Receive for large messages. With incremental optimizations,

we achieve even lower latency. The final version (bottom

line in the figure) of AR-gRPC reduces latency of 8 MBytes

Figure 7: Analysis of Various

gRPC Designs on Cluster A

message by 25% than

the base AR-gRPC de-

sign (only has hybrid

communication).

Single Server, Multiple
Clients Throughput:
The throughput of

an RPC system can

be measured by the

number of requests

served per second by

the server. Thus, this benchmark computes the total RPC

requests handled by one server when multiple concurrent

clients are sending requests. We use a fixed message size

of 4KBytes. The server runs on one node, while, we vary

the number of concurrent clients from 4 to 64 and distribute

them uniformly among four different nodes.

Figure 8 represents the Single Server, Multiple Clients

Throughput comparison among AR-gRPC, default gRPC and

public RDMA-gRPC on Cluster A. In our experiment, we

achieve at least 1.5x performance speedup in throughput com-

pared to the default gRPC. For example, AR-gRPC achieves

a throughput of 112,751 calls/s for 64 concurrent clients,

whereas the default gRPC reaches 74,903 calls/s, resulting

a 1.5x improvement. On the other hand, the public RDMA-

gRPC fails to scale after 16 clients. For 64 clients, AR-

gRPC design achieves a significant 2.3x speedup compared

to public RDMA-gRPC design. We attribute this speedup to

message pipelining and optimized RDMA-Polling as discussed

in Section IV. A high throughput is desired for TensorFlow

as, for example, in a large scale cluster all the workers

may need to update variables in Parameter Server at once.

Figure 8: gRPC Single Server,

Multiple Clients Throughput

Evaluation on Cluster A

Therefore, AR-gRPC

is well-suited for that

deployment.

Performance Comparison
in Fully-Connected Ar-
chitecture: In a Tensor-

Flow cluster, Node-to-Node

communication is built by

a gRPC server and mul-

tiple channels to connect

with other workers’ gRPC

servers. This kind of deployment forms a Fully-Connected net-

work architecture. For this experiment, the benchmark exactly

models the communication pattern of TensorFlow. We deploy

four nodes that spawn a gRPC server on each of the nodes

and create three distinct gRPC channels that connect to other

nodes’ server. As in distributed TensorFlow, communication

involves sending large tensors, we measure the performance by

sending large payloads ranging from 2 MBytes to 8 MBytes.

Figure 9 shows the performance comparison of different gRPC

designs in terms of latency and throughput averaged across all

the processes.

As shown in Figure 9(a), in Cluster A, AR-gRPC reduces

average latency by 45% compared to the default gRPC for 2

MBytes payload. In addition, Figure 9(b) shows that AR-gRPC

achieves about 1.8x and 1.18x average throughput speedup

for 2 MBytes payload compared to default gRPC and public

RDMA-gRPC, respectively. Also, Figure 9(c) and 9(d) show

that in Cluster B, AR-gRPC achieves 60% reduction in average

latency and obtains throughput speedup of about 2.68x for 4

Mbytes payload compared to default gRPC.
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(a) Latency (A) (b) Throughput (A) (c) Latency (B) (d) Throughput (B)

Figure 9: Performance Comparison in Fully-Connected Architecture of gRPC

Results from the above experiments are a clear indication

that compared with our proposed AR-gRPC design, the default

gRPC on IPoIB or the public RDMA-gRPC do not achieve

optimal performance over high-performance network. AR-

gRPC outperforms default gRPC because the bottlenecks of

Socket-based communication, memory copying etc., suppress

the benefits of the high-performance network. In addition, as

the public RDMA-gRPC implements RDMA sub-optimally,

AR-gRPC’s adaptive RDMA designs outperform significantly.

C. Evaluation of AR-gRPC Enhanced TensorFlow
In this section, we evaluate AR-gRPC enhanced TensorFlow

with three other channels on Cluster A. We do not use the pub-

lic RDMA-gRPC as it is incompatible with TensorFlow 1.3.

In our experiments, we deploy TensorFlow in the Parameter

Server (PS) mode on up to twelve nodes. One node hosts the

PS and uses CPU, while the other nodes host the workers and

use Nvidia Tesla K80 GPUs. We choose synchronous training

over asynchronous as for the performance benefits [12, 22].

Also, we use different batch sizes for a comprehensive per-

formance analysis. Note that the larger the batch size, the

fewer the parameter updates, but also the higher the number of

iterations needed for convergence. The maximum batch size

we use is 32/GPU due to the GPU memory limit. 64/GPU

batch size causes out of GPU memory error in TensorFlow

is most of our experiments. We experiment with different

DNNs from TensorFlow CNN benchmark [5]. This benchmark

generates synthetic images and measures the performance by

the total number of images processed. We run these tests five

times and report the average result.

Inception4: Inception4 [23] is low computational cost DNN.

Figure 10 shows the results on up to 12 nodes of Cluster A.

We observe that (Figure 10(a), 10(b), and 10(c)) AR-gRPC

improves TensorFlow performance by a maximum of 29%,

80%, and 144% compared to default gRPC. For example,

Figure 10(c) shows an improvement of 80% (93 vs 51 images)

for batch size 16/GPU (total 176) on 12 nodes.

Moreover, in our experiments AR-gRPC process a maxi-

mum of 27%, 12%, and 31% more images than Verbs channel

as shown in Figure 10(a), 10(b), and 10(c). Also, as shown

in Figure 10(a), 10(b), and 10(c) AR-gRPC outperforms MPI

channel by a maximum of 29%, 151%, and 228% for 4, 8, and

12 nodes, respectively. In our experiments, TensorFlow scales

poorly with default MPI channel.

Resnet152: Resnet152 [15] is a popular residual DNN with

a depth of 152 layers. Figure 11 represents the results of our

experiments on up to twelve nodes of Cluster A.

Figure 11(c) shows that AR-gRPC incurs a maximum

speedup of 3x (55 vs 18 images) compared to default gRPC.

Even for higher batch size of 32/GPU (total 352) AR-gRPC

improves TensorFlow performance by 82% (Figure 11(c)).

Figure 11(a), 11(b), and 11(c) show that AR-gRPC pro-

cesses a maximum of 40%, 35%, and 30% more im-

ages, respectively, than Verbs. In addition, as seen in Fig-

ure 11(a). 11(b), and 11(c) AR-gRPC achieves a maximum

speedup of 1.61x, 3.3x and 4.5x compared to MPI channel.

Inception3 and Resnet50: Figure 12(a) shows that for batch

size of 16/GPU AR-gRPC improves Inception3 [24] perfor-

mance by 53%, 26%, and 52% over default gRPC, Verbs,

and MPI channels, respectively on 8 nodes of Cluster A.

Figure 12(b) shows for Resnet50, AR-gRPC enhanced Ten-

sorFlow processes 47%, 20%, and 35% more images than

gRPC-IPoIB, Verbs, and MPI channel for 32/GPU batch size.

GoogleNet and AlexNet: In this section, we compare re-

sults of two drastically different CNNs - GoogleNet [25]

and AlexNet [26]. GoogleNet has only 5 Million param-

eters, whereas AlexNet has about 60 Million parameters.

Figure 12(c) shows the comparison among gRPC and AR-

gRPC on 8 nodes of Cluster A. We can not show other chan-

nels due to lack of space. AR-gRPC process a maximum of

128% (batch size 8/GPU) more images than default gRPC for

GoogleNet. Although, for large batch size (32/GPU, total 224)

the improvement is about 15% (597 vs 517). This is expected

as higher batch size and less parameters in GoogleNet results

in less network intensive gradient updates. In comparison, for

the same batch size (32/GPU) AR-gRPC shows 89% (124 vs

65) performance improvement for Alexnet compared to default

gRPC. This proves, even with higher batch size, if the DNN

has a large number of parameters, AR-gRPC can improve

TensorFlow performance significantly.

The above experiments show that AR-gRPC has the poten-

tial to accelerate Deep Learning using TensorFlow compared

to the other available channels. Moreover, we show that when

the DNN is complex and performs frequent network intensive

variable updates, AR-gRPC provides the optimal channel over

RDMA networks. Also, AR-gRPC scales well as compared to

other channels with increasing number of nodes.

VI. RELATED WORK

RPC over RDMA: Optimization of RPC is popular in the

distributed computing field. The recent innovation of network-

ing technologies powering large-scale data centers brings new

challenges in terms of scaling and latency. Kalia et al. propose

FaSST [27] RPC, to leverage the modern hardware. Stuedi

et al. propose DaRPC [28] to implement tight integration

between user space and RPC message passing. Moreover, SU

et al. propose RDMA-based paradigm named RFP [29] that

supports traditional RPC and provides high-performance. The
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(a) 4 Nodes (b) 8 Nodes (c) 12 Nodes

Figure 10: Inception4 Evaluation on Cluster A (Higher Better); TotalBatchSize = (BatchSize/GPU)×NUMo f GPUs

(a) 4 Nodes (b) 8 Nodes (c) 12 Nodes

Figure 11: Resnet152 Evaluation on Cluster A (Higher Better); TotalBatchSize = (BatchSize/GPU)×NUMo f GPUs
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Figure 12: CNN Evaluation on Cluster A (Higher Better); TotalBatchSize = (BatchSize/GPU)×NUMo f GPUs

impact of a high-performance RPC is also well studied. For

example, Lu et al. show high-performance Hadoop RPC [17]

that benefits the entire Hadoop eco-system. In this paper, we

have selected gRPC as it is a modern RPC framework that

satisfies the need of the current data center requirements than

other available open sourced RPCs. Even though there is a

public RDMA-gRPC available, our design far exceeds that

version in terms of performance.

Optimization of TensorFlow: Google’s TensorFlow has been

in the lime light for efficient Deep Learning in the recent time.

Vishnu et al. extend TensorFlow [22] on large-scale cluster

using MPI. By leveraging the high-performance optimized

communication offered by MPI, they show good performance

improvements. Jia [30] et al. propose RDMA TensorFlow

similar to the official TensorFlow Verbs design. They re-

port a 6x performance speedup over TCP/IP (1G Ethernet)

gRPC, whereas AR-gRPC extended TensorFlow achieves 12x

speedup over TCP/IP (1G Ethernet) gRPC. We don’t show

comparison numbers against TCP/IP over Ethernet in this

paper to make a fair contrast. Lu [11] et al. have done a

meticulous evaluation of popular Deep Learning frameworks

over Big Data stacks on RDMA interconnects. They show that

RDMA-based communication can lead to significant speed

up in training time. TensorFlowOnSpark [31] is a framework

proposed by Yahoo!, which allows execution of Deep Learning

workloads with TensorFlow on existing Spark clusters.

Even though the primary and default communication of

TensorFlow is powered by gRPC, TensorFlow’s GitHub repos-

itory has contributions for supporting MPI and Verbs based

channels. The primary reason for supporting these channels

is that they can leverage high-performance communication

mechanisms such as RDMA. However, in our paper, we

present the potential in the direction of unification and adaptive

designs. We argue that by making gRPC suitable for high-

performance interconnects, we could achieve optimal perfor-

mance for distributed TensorFlow training.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a high-performance adaptive

RDMA-based communication runtime with gRPC (i.e., AR-

gRPC) for distributed TensorFlow. The results suggest that by

optimizing the performance of gRPC alone, we can achieve

high-performance while keeping a unified communication

runtime throughout the TensorFlow stack.This eliminates the

need to maintain different server protocols for distributed

TensorFlow. We perform a comprehensive analysis of Tensor-

Flow architecture and propose an adaptive RDMA-enhanced

gRPC runtime specifically designed for Deep Learning ap-

plications.We demonstrate that our AR-gRPC achieves 4.1x

speedup compared to the default gRPC on IPoIB. We also

show that AR-gRPC can speedup performance by 2.3x over

the public RDMA-gRPC. Then, we show that AR-gRPC can

benefit the runtime of distributed TensorFlow. We achieve
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3x performance improvement when using AR-gRPC channel

compared to using the default gRPC on IPoIB. Furthermore,

AR-gRPC can benefit not only TensorFlow but other applica-

tions as well, such as micro-services running on modern data

centers with gRPC as their common communication substrate.
We primarily focus on Parameter Server based TensorFlow

training in this paper. As part of future work, we will explore

different TensorFlow architectures including Uber’s (horovod)

and Baidu’s reduce tree based collective communication de-

sign. We have made our design publicly available through

RDMA-TensorFlow 0.9.1 package [32].
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